Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38335076

RESUMO

Visual guided motor imagery (MI) is commonly used in stroke rehabilitation, eliciting event-related desynchronization (ERD) in EEG. Previous studies found that immersion level and visuo-tactile stimulation could modulate ERD during visual guided MI, and both of two factors could also improve sense of ownership (SOO) over target limb (or body). Additionally, the relationship was also reported between the performance of MI and SOO. This study aims to investigate whether immersion and visuo-tactile stimulation affect visual guided MI through the SOO over virtual body in stroke patients. Nineteen stroke patients were recruited. The experiment included two phases (i.e., SOO induction and visual guided MI with SOO) that was manipulated across four conditions in a within-subject design: 2×2 , i.e., immersion (VR, 2D monitor display) × multisensory stimulation (visuo-tactile stimulation, observation without tactile stimulation). Results found peaks ERD amplitude during MI were significantly higher in stronger SOO conditions than weaker SOO conditions. Interestingly, the ERD during visual guided MI under the condition of vision only in VR and visuo-tactile stimulation in 2D monitor are similar, which indicates that SOO may be an important factor behind this phenomenon (due to the similar SOO between these two conditions). A moderate correlation was also found between SOO scores and peaks ERD amplitude during MI. This study discussed the possible factor underlying the effects of immersion and multisensory stimulation on visual guided MI in post-stroke patients, identifying the effect of SOO in this process, and could be referred in future studies for coming up with better MI paradigms for stroke rehabilitation.


Assuntos
Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Humanos , Imersão , Propriedade , Tato , Eletroencefalografia/métodos
2.
Artigo em Inglês | MEDLINE | ID: mdl-38349835

RESUMO

Virtual reality (VR)-based rehabilitation training holds great potential for post-stroke motor recovery. Existing VR-based motor imagery (MI) paradigms mostly focus on the first-person perspective, and the benefit of the third-person perspective (3PP) remains to be further exploited. The 3PP is advantageous for movements involving the back or those with a large range because of its field coverage. Some movements are easier to imagine from the 3PP. However, the 3PP training efficiency may be unsatisfactory, which may be attributed to the difficulty encountered when generating a strong sense of ownership (SOO). In this work, we attempt to enhance a visual-guided 3PP MI in stroke patients by eliciting the SOO over a virtual avatar with VR. We propose to achieve this by inducing the so-called out-of-body experience (OBE), which is a full-body illusion (FBI) that people misperceive a 3PP virtual body as his/her own (i.e., generating the SOO to the virtual body). Electroencephalography signals of 13 stroke patients are recorded while MI of the affected upper limb is being performed. The proposed paradigm is evaluated by comparing event-related desynchronization (ERD) with a control paradigm without FBI induction. The results show that the proposed paradigm leads to a significantly larger ERD during MI, indicating a bilateral activation pattern consistent with that in previous studies. In conclusion, 3PP MI can be enhanced in stroke patients by eliciting the SOO through induction of the "OBE" FBI. This study offers more possibilities for virtual rehabilitation in stroke patients and can further facilitate VR application in rehabilitation.


Assuntos
Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Realidade Virtual , Humanos , Masculino , Feminino , Propriedade , Eletroencefalografia , Extremidade Superior
3.
Chem Commun (Camb) ; 60(20): 2776-2779, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38357825

RESUMO

A hetero-bimetallic Ru(II)-Ir(III) photosensitizer was developed. Upon light exposure, contrary to the homogeneous Ru(II)-Ru(II) and Ir(III)-Ir(III) complexes that can only produce singlet oxygen, Ru(II)-Ir(III) can generate multiple reactive oxygen species and kill hypoxic tumors. This study presents the first example of a hetero-bimetallic type-I and type-II dual photosensitizer.


Assuntos
Neoplasias , Fotoquimioterapia , Rutênio , Humanos , Fármacos Fotossensibilizantes/farmacologia , Neoplasias/tratamento farmacológico , Oxigênio Singlete , Hipóxia , Rutênio/farmacologia
4.
Proc Natl Acad Sci U S A ; 121(6): e2318174121, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38289955

RESUMO

Atomically dispersed catalysts are a promising alternative to platinum group metal catalysts for catalyzing the oxygen reduction reaction (ORR), while limited durability during the electrocatalytic process severely restricts their practical application. Here, we report an atomically dispersed Co-doped carbon-nitrogen bilayer catalyst with unique dual-axial Co-C bonds (denoted as Co/DACN) by a smart phenyl-carbon-induced strategy, realizing highly efficient electrocatalytic ORR in both alkaline and acidic media. The corresponding half-wave potential for ORR is up to 0.85 and 0.77 V (vs. reversible hydrogen electrode (RHE)) in 0.5 M H2SO4 and 0.1 M KOH, respectively, representing the best ORR activity among all non-noble metal catalysts reported to date. Impressively, the Zn-air battery (ZAB) equipped with Co/DACN cathode achieves outstanding durability after 1,688 h operation at 10 mA cm-2 with a high current density (154.2 mA cm-2) and a peak power density (210.1 mW cm-2). Density functional theory calculations reveal that the unique dual-axial cross-linking Co-C bonds of Co/DACN significantly enhance the stability during ORR and also facilitate the 4e- ORR pathway by forming a joint electron pool due to the improved interlayer electron mobility. We believe that axial engineering opens a broad avenue to develop high-performance heterogeneous electrocatalysts for advanced energy conversion and storage.

5.
Sci Total Environ ; 912: 169131, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38070575

RESUMO

In this paper, the effects of species diversity, tree growth, and spatial clustering on mycorrhizal carbon and nitrogen sequestration and the interaction of soil physicochemical properties in Northeast China were investigated. Based on 720 10 m ∗ 10 m plots in Harbin Experimental Forest Farm of Northeast Forestry University, we determined mycorrhizal biomarkers of easily extractable Glomalin-related soil protein (EEG) and total Glomalin-related soil protein (TG). Four plant diversity indices, seven structural metrics, and five soil properties were also measured. We found that: 1) The low tree diversity plots had 1.08-1.23 times higher TG, EEG, TG-N/TN (proportion of N in TG to TN), and TG-C/SOC (proportion of C in TG to SOC) than the high plots. 2) Tree diameter was negatively correlated with EEG and TG, but positively correlated with the EEG and TG contribution to soil TN and SOC. Soil EEG and TG were positively correlated with under-branch height and tree density. W (Uniform Angle Index, higher W indicates more clustering of tree distribution in the plot) was negatively correlated with the above four ratios and positively correlated with EEG/TG. 3) pH was the most powerful explainer for the GRSP variations (6.8 %, strongest negative association with GRSP/TN, R2 > 0.13), followed by soil electrical conductance (6.5 %, positive relation with TG, p < 0.05), AP (3.2 %). 4) Plant diversity mainly affected GRSP traits through the interaction with soils (0.07), tree growth and density directly increased TG, TG-N/TN, and TG-C/SOC, while tree spatial distribution directly reduced TG-N/TN. Our finding highlighted the important effects of tree diversity and forest structural traits on GRSP amount, carbon sequestration, and nutrient retentions, and could support glomalin-related forest soil management of temperate forests in the high-latitude northern hemisphere.


Assuntos
Micorrizas , Solo , Humanos , Solo/química , Árvores/metabolismo , Micorrizas/metabolismo , Florestas , Proteínas Fúngicas/metabolismo , Glicoproteínas/metabolismo , China , Carbono/análise
6.
Environ Sci Pollut Res Int ; 30(54): 115337-115359, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37882924

RESUMO

Forest biomass carbon stability is crucial in achieving carbon neutrality in the high-latitude northern hemisphere, and identifying the differences among forest types and decoupling their associations with plant traits and geoclimatic conditions is the basis for precise forest management. We conducted a large-scale field survey in state-owned forest areas in northeastern China, covering a total of 280,000 km2 forest area, 1275 arbor plots (30 m × 30 m), 5285 shrub plots (5 m × 5 m), and 7076 herb plots (1 m × 1 m). We hypothesized that the conifer and broadleaf forest differences in biomass carbon (C) storage and stability (environmental stability to climatic changes-ES and recalcitrant stability to be decomposed-RS) are associated with mycorrhizal abundance (EcM: ectomycorrhizal, AM: arbuscular mycorrhizal, NM-AM: non-mycorrhizal or arbuscular mycorrhizal), taxon diversity traits (richness, Simpson, Shannon-Wiener, and evenness), and structural differences (diameter, height, and density) in the arbor, shrub, and herb layers. Our results showed that (1) conifer forests had 13.1 Mg/ha higher C stocks and 30.9% higher RS, but 8.6% lower ES than broadleaf forests (p < 0.05). Trees in conifer forests had 1.5 m taller and 2.4 cm thicker trees, but 15% less tree density than those in broadleaf forests. Herbs in conifer forests were 14% shorter and 57% denser than in broadleaf forests. (2) The abundance of EcM-symbiont trees in conifer forests was 15% higher than in broadleaf forests, while their EcM-symbiont shrubs and AM-symbiont herbs were 5-6% lower (p < 0.05). Broadleaf forests had 7% higher tree richness and 19% higher herb richness but 9% lower shrub richness than conifer forests (p < 0.05). Tree and herb evenness was 5-6% higher in conifer forests (p < 0.05). (3) Variations of biomass C sink traits could be explained more by plant diversity in conifer forests (7%) than in broadleaf forests (3.4%). Mycorrhizal symbionts could explain more in broadleaf forests (9.7%) than conifer forests (6.7%). In conifer forests, fewer EcM trees (higher AM trees) and AM herbs, higher tree richness were accompanied by higher biomass C storage and ES. Broadleaf forests underwent similar changes, characterized by an elevation in both RS and ES. (4) Our research emphasized that variations in carbon sequestration between conifer and broadleaf forests could be attributed to mycorrhizal symbionts and species diversity besides tree size-related structural differences. Our findings support the precise management of boreal forests to achieve carbon neutrality based on leaf blade types, plant diversity, and mycorrhizal symbionts.


Assuntos
Micorrizas , Traqueófitas , Biomassa , Sequestro de Carbono , Taiga , Florestas , Plantas , Árvores , Carbono , Solo
7.
Conscious Cogn ; 115: 103578, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37738769

RESUMO

This paper attempts to induce the third-person perspective full body illusion (3PP-FBI) with virtual reality (VR) in stroke patients. Nineteen individuals with stroke were recruited. The 3PP-FBI induction method, which was well-established in healthy individuals, using synchronous visual-tactile stimulation on one body part was used. Questionnaire scores and proprioceptive drift values were collected under different conditions for characterizing the induced 3PP-FBI. Results showed that synchronous visual-tactile stimulation of a single body part (back or upper limb) was sufficient to elicit 3PP-FBI in stroke patients, forming a sense of ownership (SOO) over the entire virtual body. Moreover, the intensity of 3PP-FBI was stronger when the back was stimulated, compared to stimulating the impaired upper limb. This study demonstrated the viability of visual-guided rehabilitation training while having a SOO to a virtual body from the third-person perspective, in anticipation of achieving better rehabilitation outcome for movements beyond the first-person perspective.


Assuntos
Ilusões , Acidente Vascular Cerebral , Percepção do Tato , Realidade Virtual , Humanos , Ilusões/fisiologia , Tato , Percepção do Tato/fisiologia
8.
J Environ Manage ; 344: 118375, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37356331

RESUMO

Soil nitrogen (N) is an essential nutrient for tree growth, and excessive N is a source of pollution. This paper aims to define the effects of plant diversity and forest structure on various aspects of soil N cycling. Herein, we collected soils from 720 plots to measure total N content (TN), alkali-hydrolyzed N (AN), nitrate N (NO3--N), ammonium N (NH4+-N) in a 7.2 ha experimental forest in northeast China. Four plant diversity indices, seven structural metrics, four soil properties, and in situ N2O efflux were also measured. We found that: 1) high tree diversity had 1.3-1.4-fold NO3--N, 1.1-fold NH4+-N, and 1.5-1.8-fold N2O efflux (p < 0.05). 2) Tree growth decreased soil TN, AN, and NO3--N by more than 13%, and tree mixing and un-uniform distribution increased TN, AN, and NH4+-N by 11-22%. 3) Soil organic carbon (SOC) explained 34.3% of the N variations, followed by soil water content (1.5%), tree diameter (1.5%) and pH (1%), and soil bulk density (0.5%). SOC had the most robust linear relations to TN (R2 = 0.59) and AN (R2 = 0.5). 4) The partial least squares path model revealed that the tree diversity directly increased NO3--N, NH4+-N, and N2O efflux, and they were strengthened indirectly from soil properties by 1%-4%. The effects of tree size-density (-0.24) and spatial structure (0.16) were mainly achieved via their soil interaction and thus indirectly decreased NH4+-N, AN, and TN. Overall, high tree diversity forests improved soil N availability and N2O efflux, and un-uniform spatial tree assemblages could partially balance the soil N consumed by tree growth. Our data support soil N management in high northern hemisphere temperate forests from tree diversity and forest structural regulations.


Assuntos
Solo , Árvores , Solo/química , Carbono , Florestas , Nitrogênio/análise , China
9.
Cell Mol Immunol ; 20(7): 739-776, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37198402

RESUMO

Over the past thirty years, the importance of chemokines and their seven-transmembrane G protein-coupled receptors (GPCRs) has been increasingly recognized. Chemokine interactions with receptors trigger signaling pathway activity to form a network fundamental to diverse immune processes, including host homeostasis and responses to disease. Genetic and nongenetic regulation of both the expression and structure of chemokines and receptors conveys chemokine functional heterogeneity. Imbalances and defects in the system contribute to the pathogenesis of a variety of diseases, including cancer, immune and inflammatory diseases, and metabolic and neurological disorders, which render the system a focus of studies aiming to discover therapies and important biomarkers. The integrated view of chemokine biology underpinning divergence and plasticity has provided insights into immune dysfunction in disease states, including, among others, coronavirus disease 2019 (COVID-19). In this review, by reporting the latest advances in chemokine biology and results from analyses of a plethora of sequencing-based datasets, we outline recent advances in the understanding of the genetic variations and nongenetic heterogeneity of chemokines and receptors and provide an updated view of their contribution to the pathophysiological network, focusing on chemokine-mediated inflammation and cancer. Clarification of the molecular basis of dynamic chemokine-receptor interactions will help advance the understanding of chemokine biology to achieve precision medicine application in the clinic.


Assuntos
COVID-19 , Medicina de Precisão , Humanos , Receptores de Quimiocinas/genética , Receptores de Quimiocinas/metabolismo , COVID-19/genética , Quimiocinas/genética , Quimiocinas/metabolismo , Epigênese Genética
10.
Sci Total Environ ; 880: 163263, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37028669

RESUMO

High water-holding forests are essential for adapting to drought climates under global warming, and a central issue is which type of forests could conserve more water in the ecosystem. This paper explores how forest structure, plant diversity, and soil physics impact forest water-holding capacities. We investigated 720 sampling plots by measuring water-holding capacities from 1440 soil and litter samples, 8400 leaves, and 1680 branches and surveying 18,054 trees in total (28 species). Water-holding capacities were measured as four soil indices (Maxwc, maximum water-holding capacity; Fcwc, field water-holding capacity; Cpwc, soil capillary water-holding capacity; Ncpwc, non-capillary water-holding capacity), two litter metrics (Maxwcl, maximum water-holding capacity of litters; Ewcl, effective water-holding capacity of litters), and canopy interception (C, the sum of estimated water interception of all branches and leaves of all tree species in the plot). We found that water-holding capacity in the big-sized tree plots was 4-25 % higher in the litters, 54-64 % in the canopy, and 6-37 % in the soils than in the small-sized plots. The higher species richness increased all soil water-holding capacities compared to the lowest richness plot. Higher Simpson and Shannon-Wiener plots had 10-27 % higher Ewcl and C than the lowest plots. Bulk density had the strongest negative relations with Maxwc, Cpwc, and Fcwc, whereas field soil water content positively affected them. Soil physics, forest structure, and plant diversity explained 90.5 %, 5.9 %, and 0.2 % of the water-holding variation, respectively. Tree sizes increased C, Ncpwc, Ewcl directly (p < 0.05), and richness increased Ewcl directly (p < 0.05). However, the direct effects from the uniform angle index (tree distribution evenness) were balanced by their indirect effect from soil physics. Our findings highlighted that the mixed forests with big-sized trees and rich species could effectively improve the water-holding capacities of the ecosystem.


Assuntos
Ecossistema , Árvores , Água , Biodiversidade , Florestas , China , Solo/química
11.
ACS Appl Mater Interfaces ; 15(17): 21585-21594, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37078856

RESUMO

Lithium-sulfur (Li-S) batteries have high theoretical energy density but low sulfur utilization due to the inherent insulating nature of sulfur and the shuttle effect of polysulfides. Herein, the CO2-activation carbon paper was prepared by poly(p-phenylenebenzobisoxazole) (PBO) nanofiber and was first applied as an interlayer for efficiently alleviating the shuttle effect of polysulfides in Li-S batteries. This interlayer exhibits good flexibility and strength with rich -C═O and -COOH functional groups on the three-dimensional porous structure, which improves chemical adsorption on Li2Sx species and ion rapid diffusion via interconnected diffusion channels and thus enhances the electrochemical kinetics. The initial specific capacity is 1367.4 mAh g-1 and remains 999.8 mAh g-1 after 200 cycles at 0.2C and 780.1 mAh g-1 at 5C, and the Coulombic efficiency is high, up to 99.8%, which is much better than that for the carbon paper without CO2 activation. The highly conductive flexible PBO carbon paper may bring breakthroughs in performance and thus lead to more practical applications of Li-S batteries.

12.
Front Chem ; 10: 931201, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36034673

RESUMO

Herein, we reported that KOH impregnation can generate a large number of porous structures with fruitful nitrogen self-doped groups during the carbonized process for poly (p-phenylene terephthalamide) fiber and poly (p-phenylene benzobisoxazole) fiber (denoted as PPTA and PBO, respectively). The intrinsical insulation, volume change, and shuttle effect of polysulfides then can be more significantly improved for the PBO-coated separator than the PPTA case. The discharge capacity primary achieves 1,322 mA h/g, which retains 827 mA h/g even after 200 cycles at 0.2 C for the cell with PBO-coated separator. The reversible specific discharge capacity maintains 841 mA h/g with a Coulomb efficiency of 99.7% at 5 C. The nitrogen self-doped nanocarbon particles are etched by KOH with the simple one-step preparation, which has promising application as Li-S battery cathode.

13.
Sci Total Environ ; 814: 151942, 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-34843791

RESUMO

Shelterbelt farmland afforestation has been well-reported in its wind-break and climate regulation function, but less is on underground-soil organic carbon (SOC) sequestration and environmental stability. In this paper, we collected 180 soil samples from soil depths of 1 m (0-20, 20-40, 40-60, 60-80, 80-100 cm) in the farmland and neighbor shelterbelts in Songnen Plain, northeastern China. The sample plots covered six regions in the study area. SOC concentration and respiration decomposition rate, Q10 (temperature sensitivity), Hs (humidity sensitivity) were determined in the laboratory cultivation. Soil properties (N, P, K, electrical conductivity-EC, pH) and geographic-climate factors (multiple-year mean annual temperature and precipitation, MAT&MAP; temperature and precipitation during sampling month, MT &MP) were used to reveal the underlying reason for the changes in soil carbon sequestration. The results showed no significant difference in SOC respirational decomposition rate between farmland and shelterbelt forests but a 15.8% higher SOC concentration in shelterbelt forests (p < 0.05). The poplar shelterbelts reduced the Q10 value by 15.4% (p < 0.05), with deeper soils a more significant reduction in Q10. With soil moisture increases, both shelterbelt forests and farmland showed an obvious respiration pattern of first-increasing-then-decreasing. No significant Hs (linear gradients) differences were found in farmland and shelterbelt forests. Partitioning of the RDA ordination-based variation showed that SOC stability (Hs and Q10) of farmland was more affected by geo-climate. In contrast, the SOC stability of shelterbelt forests was greatly influenced by soil properties. Our findings manifest that the above-mentioned SOC changes can improve shelterbelt forest carbon sequestration function by prolonging the SOC lifespan in soil by at least 7% and SOC concentration by >15%. This should be included in the future to assess the underground soil carbon impact of Three-North shelterbelts in China and provide data supports for the estimation of similar forest stands in other parts of the world.


Assuntos
Carbono , Solo , Carbono/análise , Sequestro de Carbono , China , Fazendas , Florestas , Temperatura
14.
J Phys Chem B ; 125(47): 12981-12989, 2021 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-34797676

RESUMO

Excited state intramolecular proton transfer (ESIPT) has drawn much attention for its important applications in a variety of areas. Here, the steady-state and time-resolved absorption spectroscopic experiments as well as DFT/TD-DFT calculations are employed to study the photophysical properties and photochemical reaction mechanisms of 2-(2'-hydroxyphenyl) benzoxazole (HBO) and selected derivatives (compounds 1-3). Because of their larger π-conjugation framework, compounds 1-3 display red-shifted absorbance but blue-shifted fluorescence compared with HBO. A fast ESIPT process is observed directly for HBO while compound 3 has an enol/keto equilibrium type of ESIPT that exhibits dual emission. Interestingly, only the emission of the enol form is observed for compounds 1 and 2 which suggests that the ESIPT process is strongly inhibited. These results indicate the decoration with electron-withdrawing groups such as thiadiazol and pyrazine on the hydroxyphenyl ring (compounds 1 and 2) apparently suppresses the proton-transfer processes in their excited states. Whereas the ESIPT process is rarely increased for compound 3 that modified with the phenanthrol ring, because the effective conjugation is reduced for compound 3 compared with HBO. The work here provides fundamental insights that may be useful for designing novel ESIPT molecules in the future.

15.
Biomaterials ; 276: 121064, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34391019

RESUMO

The photodynamic therapy (PDT) of cancer is limited by tumor hypoxia as PDT efficiency depends on O2 concentration. A novel oxygen self-sufficient photosensitizer (Ru-g-C3N4) was therefore designed and synthesized via a facile one-pot method in order to overcome tumor hypoxia-induced PDT resistance. The photosensitizer is based on [Ru(bpy)2]2+ coordinated to g-C3N4 nanosheets by Ru-N bonding. Compared to pure g-C3N4, the resulting nanosheets exhibit increased water solubility, stronger visible light absorption, and enhanced biocompatibility. Once Ru-g-C3N4 is taken up by hypoxic tumor cells and exposed to visible light, the nanosheets not only catalyze the decomposition of H2O2 and H2O to generate O2, but also catalyze H2O2 and O2 concurrently to produce multiple ROS (•OH, •O2-, and 1O2). In addition, Ru-g-C3N4 affords luminescence imaging, while continuously generating O2 to alleviate hypoxia greatly improving PDT efficacy. To the best of our knowledge, this oxygen self-sufficient photosensitizer produced via grafting a metal complex onto g-C3N4 is the first of its type to be reported.


Assuntos
Fotoquimioterapia , Rutênio , Grafite , Humanos , Peróxido de Hidrogênio , Hipóxia/tratamento farmacológico , Compostos de Nitrogênio , Oxigênio , Fármacos Fotossensibilizantes/uso terapêutico , Espécies Reativas de Oxigênio
16.
Shock ; 56(3): 440-449, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34091586

RESUMO

BACKGROUND: Ferroptosis has been found to play an important role in myocardial ischemia reperfusion (MIR) injury (MIRI). This study aimed to explore whether the improvement effect of Etomidate (Eto) on MIRI was related to ferroptosis. METHODS: The MIRI rats were constructed using left anterior descending artery occlusion for 30 min followed by reperfusion for 3 h. The Eto post-conditioning was performed by Eto administration at the beginning of the reperfusion. For rescue experiments, MIRI rats were pretreated with ferroptosis inducer erastin or Nrf2 inhibitor ML385 intraperitoneally 1 h prior to MIR surgery. RESULTS: Eto mitigated cardiac dysfunction and myocardium damage, as well as the release of creatine kinase and lactate dehydrogenase caused by ischemia/reperfusion (IR). Additionally, Eto reduced the expression of myocardial fibrosis-related proteins (collagen II and α-smooth muscle actin) and the secretion of inflammatory factors (IL-6, IL-1ß, and TNF-α) in MIRI rats. Also, Eto inhibited IR-induced ferroptosis in myocardium, including reducing superoxide dismutase content, glutathione activity, and glutathione peroxidase 4 expression, while increasing the levels of malondialdehyde and iron and Acyl-CoA synthetase long-chain family member 4. Moreover, the inhibition of Eto on IR-induced myocardial fibrosis and inflammation could be eliminated by erastin. The up-regulation of Nrf2 and HO-1 protein expression, and the nuclear translocation of Nrf2 induced by Eto in the myocardial tissues of MIRI rats, could be prevented by erastin. Besides, ML385 eliminated the inhibition of Eto on ferroptosis induced by MIR. CONCLUSIONS: Eto attenuated the myocardial injury by inhibiting IR-induced ferroptosis via Nrf2 pathway, which may provide a new idea for clinical reperfusion therapy.


Assuntos
Etomidato/farmacologia , Ferroptose/efeitos dos fármacos , Heme Oxigenase (Desciclizante)/fisiologia , Hipnóticos e Sedativos/farmacologia , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Fator 2 Relacionado a NF-E2/fisiologia , Animais , Modelos Animais de Doenças , Masculino , Traumatismo por Reperfusão Miocárdica/etiologia , Traumatismo por Reperfusão Miocárdica/patologia , Ratos , Ratos Sprague-Dawley
17.
J Tradit Chin Med ; 41(2): 246-253, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33825404

RESUMO

OBJECTIVE: To investigate the efficacy of the Danlou Fang (DL) Traditional Chinese Medicine formula on microvascular obstruction (no-reflow) through the endothelial/inducible nitric oxide synthase (eNOS/iNOS) pathway in a rat model. METHODS: Sprague-Dawley rats were subjected to 60 min of coronary artery occlusion (or sham procedure) followed by 2 h of reperfusion and were then divided into treatment groups: sham, model, DL (500 mg/kg), DL (500 mg/kg) + eNOS inhibitor L-nitroarginine (L-NNA; 7.5 mg/kg), and sodium nitroprusside (SNP; 0.5 mg/kg). There were 16 per group. Areas of no-reflow were determined by thioflavin S staining of heart tissue. Cardiac function was assessed by echocardiography. Myocardial enzymes and antioxidants in serum were measured and analyzed. The relative protein expression levels of eNOS and iNOS were determined by western blotting. RESULTS: DL had a myocardial protective effect on myocardial reperfusion and reduced the area of no-reflow. The serum levels of creatine kinase (CK), myocardial CK isoenzyme CK-MB, and lactate dehydrogenase were significantly lower in the DL group than in the model (P < 0.05). DL treatment also decreased the serum content of malondialdehyde and reactive oxygen species (ROS), increased the activity of superoxide dismutase and nitric oxide, and promoted eNOS expression (P < 0.05) while lowering iNOS expression. CONCLUSION: DL reduced the area of no-reflow and had a myocardial protective effect that may be associated with the eNOS/iNOS pathway.


Assuntos
Medicamentos de Ervas Chinesas/administração & dosagem , Infarto do Miocárdio/tratamento farmacológico , Óxido Nítrico Sintase Tipo III/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Animais , Humanos , Masculino , Malondialdeído/metabolismo , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo III/genética , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo
18.
Phys Chem Chem Phys ; 23(6): 3761-3770, 2021 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-33538741

RESUMO

Tetrazolium salts (TZs) are pervasively utilized as precursors in the dye industry, colorimetric probes in enzyme assays and for exploring nanomaterial toxicity, but its own toxicity is not investigated enough so far. Using femtosecond transient absorption spectroscopy, nanosecond pulse radiolysis (ns-PRL), western blotting and UV-vis absorption spectroscopy, here we characterized a neutral tetrazolinyl radical (with the same maximum absorption at 420 nm and different lifetimes of 5.0 and 9.0 µs for two selected TZs), the key intermediate of TZs reduction, and noticed TZs-formazan production under UV light irradiation accompanied by 41% increase in the cross-linking of lysozyme (Lyso, model protein) compared to TZs-free sample, which uncovered the photoenhanced oxidation of TZs towards Lyso. The ns-PRL in a reductive atmosphere simulated the electron/proton donors of amino acid residues in Lyso upon photoexcitation and revealed the reduction mechanism of TZs, as that first followed one-electron-transfer and then probably proton-coupled electron transfer. This is the first time to report on the photoenhanced oxidation mechanism of TZs, which would provide new insights into the applications of TZs in cell biology, "click" chemistry and nanotoxicology.


Assuntos
Aminoácidos/química , Muramidase/química , Sais de Tetrazólio/química , Aminoácidos/efeitos da radiação , Animais , Galinhas , Radicais Livres/química , Muramidase/efeitos da radiação , Oxirredução , Sais de Tetrazólio/efeitos da radiação , Raios Ultravioleta
19.
Angew Chem Int Ed Engl ; 60(8): 4150-4157, 2021 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-33174359

RESUMO

The organoplatinum(II) complex [Pt(C^N^N)(Cl)] (C^N^N=5,6-diphenyl-2,2'-bipyridine, Pt1) can assemble into nanoaggregates via π-π stacking and complementary hydrogen bonds, rather than Pt-Pt interactions. Pt1 exhibits ratiometric dual emission, including rare blue emission (λem =445 nm) and assembly-induced yellow emission (λem =573 nm), under one- and two-photon excitation. Pt1 displays blue emission in cells with an intact membrane due to its low cellular uptake. In cells where the membrane is disrupted, uptake of the complex is increased and at higher concentrations yellow emission is observed. The ratio of yellow to blue emission shows a linear relationship to the loss of cell membrane integrity. Pt1 is, to our knowledge, the first example of an assembly-induced two-photon ratiometric dual emission organoplatinum complex. The excellent and unique characteristics of the complex enabled its use for the tracking of cell apoptosis, necrosis, and the inflammation process in zebrafish.


Assuntos
Complexos de Coordenação/química , Microscopia de Fluorescência por Excitação Multifotônica , Platina/química , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Complexos de Coordenação/metabolismo , Complexos de Coordenação/farmacologia , Humanos , Inflamação/induzido quimicamente , Inflamação/diagnóstico por imagem , Larva/química , Larva/metabolismo , Piridinas/química , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/metabolismo
20.
Molecules ; 25(15)2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-32756525

RESUMO

Benzoin is one of the most commonly used photoinitiators to induce free radical polymerization. Here, improved benzoin properties could be accomplished by the introduction of two methoxy substituents, leading to the formation of 3',5'-dimethoxybenzoin (DMB) which has a higher photo-cleavage quantum yield (0.54) than benzoin (0.35). To elucidate the underlying reaction mechanisms of DMB and obtain direct information of the transient species involved, femtosecond transient absorption (fs-TA) and nanosecond transient absorption (ns-TA) spectroscopic experiments in conjunction with density functional theory/time-dependent density functional theory (DFT/TD-DFT) calculations were performed. It was found that the photo-induced α-cleavage (Norrish Type I reaction) of DMB occurred from the nπ* triplet state after a rapid intersystem crossing (ISC) process (7.6 ps), leading to the generation of phenyl radicals on the picosecond time scale. Compared with Benzoin, DMB possesses two methoxy groups which are able to stabilize the alcohol radical and thus result in a stronger driving force for cleavage and a higher quantum yield of photodissociation. Two stable conformations (cis-DMB and trans-DMB) at ground state were found via DFT calculations. The influence of the intramolecular hydrogen bond on the α-cleavage of DMB was elaborated.


Assuntos
Benzoína/química , Teoria da Densidade Funcional , Luz , Benzoína/análise , Cromatografia Gasosa , Radicais Livres/química , Cinética , Polimerização , Espectrofotometria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...